lunes, 3 de diciembre de 2012

Movimiento Circular

Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Una vez situado el origen O de ángulos describimos el movimiento circular mediante las siguientes magnitudes.

Posición angular, q

En el instante t el móvil se encuentra en el punto P. Su posición angular viene dada por el ángulo q, que hace el punto P, el centro de la circunferencia C y el origen de ángulos O.
El ángulo q, es el cociente entre la longitud del arco s y el radio de la circunferencia rq=s/r. La posición angular es el cociente entre dos longitudes y por tanto, no tiene dimensiones.

Velocidad angula,w

En el instante t' el móvil se encontrará en la posición P' dada por el ángulo q '. El móvil se habrá desplazado Dq=q ' -q en el intervalo de tiempo Dt=t'-t comprendido entre t y t'.

Se denomina velocidad angular media al cociente entre el desplazamiento y el tiempo.Como ya se explicó en el movimiento rectilíneo, la velocidad angular en un instante se obtiene calculando la velocidad angular media en un intervalo de tiempo que tiende a cero.

Aceleración,a

Si en el instante t la velocidad angular del móvil es w y en el instante t' la velocidad angular del móvil es w'. La velocidad angular del móvil ha cambiado Dw=w' -w en el intervalo de tiempo Dt=t'-t comprendido entre t y t'.

Se denomina aceleración angular media al cociente entre el cambio de velocidad angular y el intervalo de tiempo que tarda en efectuar dicho cambio.La aceleración angular en un instante, se obtiene calculando la aceleración angular media en un intervalo de tiempo que tiende a cero.






Lanzamiento Vertical

Para el lanzamiento vertical nos encontramos con que v_0 es positiva, y así se mantendrá aún cuando su módulo llegue a valer cero. Esto ocurrirá en el punto más alto de la trayectoria, en el cual la v = 0, pues pasará de valores positivos a negativos. En ese punto de la altura máxima, el móvil se encontrará parado durante un instante, después del cual comenzará caer. Durante todo el movimiento la aceleración que sufrirá la partícula será la de la gravedad, la cual siempre tiene el mismo sentido, hacia abajo y, por convenio, negativo.Las principales formulas son:                                   
  • Vf= Vo +g.t
  • g=Vf-Vo/t
  • Y= Vo.t + g.t2/2

Caída Libre


Caída Libre

Es el movimiento rectilíneo en dirección vertical con aceleración constante realizado por un cuerpo cuando se deja caer en el vacío.

La caída libre resalta dos características importantes:

1)  Los objetos en caída libre no encuentran resistencia del aire.

2) Todos los objetos en la superficie de la Tierra aceleran hacia abajo a un valor de aproximadamente 10 m/seg2 (Para ser más exacto 9.8 m/seg2 ).

Las principales formulas de dicho movimiento son:
  • g=Vf/t 
  • Vf2= 2gy
  • y=g.t2 /2




Movimiento Uniformemente Retardado

Cuando la aceleración es negativa estamos hablando de un movimiento rectilíneo uniformemente retardado. En este caso la velocidad disminuye con el paso del tiempo.

Movimiento Uniformemente Acelerado

En física, el movimiento uniformemente acelerado (MUA) es aquel movimiento en el que la aceleración que experimenta un cuerpo permanece constante (en magnitud y dirección) en el transcurso del tiempo.

Movimiento Retilíneo Uniformemente Variado


Movimiento Rectilíneo Uniformemente Variado


Se denomina así a aquel movimiento rectilíneo que se caracteriza porque su aceleración a permanece constante en el tiempo (en módulo y dirección).

En este tipo de movimiento el valor de la velocidad aumenta o disminuye uniformemente al transcurrir el tiempo, esto quiere decir que los cambios de velocidad son proporcionales al tiempo transcurrido, o, lo que es equivalente, en tiempos iguales la velocidad del móvil aumenta o disminuye en una misma cantidad.

Existen 3 fórmulas básicas para este tipo de movimiento:


Movimiento Rectilíneo Uniforme


Movimiento Rectilíneo Uniforme

Un movimiento es rectilíneo cuando describe una trayectoria recta y uniforme cuando su velocidad es constante en el tiempo, es decir, su aceleración es nula. Esto implica que la velocidad media entre dos instantes cualesquiera siempre tendrá el mismo valor. Además la velocidad instantánea y media de este movimiento coincidirán.


Formula a emplear:
V=X/t

jueves, 28 de junio de 2012

Tablas de datos obtenidos. Experiencia 2



1
2
3
4
5
6
7
8
9
10
Tiempos
Promedios
5
5,8
5,4
7,6
6,5
5,3
6,5
5,7
5,7
5,8
7,1
6,14
10
9,9
9,4
11,20
9,49
9,3
9,76
9,27
8,32
8,20
10,12
9,496
15
11,38
11,16
13,54
12,10
10,2
11,29
11,29
16,98
11,25
12,33
121,52

Experiencia


sábado, 19 de mayo de 2012

Momento o torque de una fuerza

Es la capacidad que tiene ella para hacer girar un cuerpo. También puede decirse que es la intensidad con la que la fuerza, actuando sobre un cuerpo, tiende a comunicarse un movimiento de rotación.

Torno

Consta de una rueda que gira alrededor de un eje donde se enrolla una cuerda, mecate o cadena. Al aplicar una fuerza sobre la manivela de la rueda para hacerla girar, el eje que es más delgado gira con mayor fuerza, lo cual hace que se pueda mover una carga pesada con un pequeño esfuerzo. Un ejemplo de este mecanismo o máquina es  el torno utilizado para sacar agua de pozos y el volante de los automóviles.

Tipos de palancas

Hay tres tipos de palancas:

Palanca de primer género.

Se caracteriza por tener el fulcro (Apoyo) entre la fuerza a vencer (R) y la fuerza a aplicar (P).
Image En una palanca de primer género la fuerza que hay que hacer para vencer la resistencia dependerá de la longitud de los brazos de pòtencia y de resistencia, cuanto mayor sea la longitud del brazo de potencia, menor fuerza habrá que ejercer.

Palanca de segundo género:

Se caracteriza porque la fuerza a vencer (R) se encuentra entre el fulcro (Apoyo) y la fuerza a aplicar (P).
Image  Este tipo de palancas presentan la ventaja de tener que hacer muy poca fuerza en el brazo de fuerza para poder vencer la fuerza resistente, por ejemplo se puede utilizar esta palanca para transportar una carga en un carrillo de mano, para abrir un tapón de una botella mediante un abridor o para partir una nuez con el casanueces.

Palanca de tercer género:

Se caracteriza por ejercerse la fuerza “a aplicar”  (P) entre el fulcro (Apoyo) y la fuerza a vencer (R).
ImageEn las palancas de tercer género la fuerza que hay que hacer para vencer la resistencia es bastante elevada. 

Tipos de poleas


El término polea designa a una máquina utilizada para la transmisión de fuerza. Consiste en una rueda surcada en el borde, donde se coloca una soga, y se emplea con el objetivo de cambiar el sentido de la fuerza o disminuirla considerablemente.
Las poleas se pueden clasificar de la siguiente manera:
POLEAS SIMPLES: esta clase de poleas se utiliza para levantar una determinada carga. Cuenta con una única rueda, a través de la cual se pasa la soga. Las poleas simples direccionan de la manera más cómoda posible el peso de la carga.
polea de tipo simple

  • POLEAS MÓVILES: esta clase de poleas son aquellas que están unidas a la carga y no a la viga, como el caso anterior. Se compone de dos poleas: la primera esta fija al soporte mientras que la segunda se encuentra adherida a la primera a través de una cuerda. Las poleas móviles permiten multiplicar la fuerza ejercida, debido a que el objeto es tolerado por las dos secciones de la soga. De esta manera, la fuerza aplicada se reduce a la mitad. Y la distancia a la que se debe tirar de la cuerda es del doble.
POLEAS COMPUESTAS: el sistema de poleas compuestas se utiliza con el propósito de alcanzar una amplia ventaja de carácter mecánico, levantando objetos de gran peso con un esfuerzo mínimo. Para su ejecución se emplean poleas fijas y móviles. Con la primera se cambia la dirección de la fuerza a realizar. El sistema de poleas móviles más común es el polipasto, cuyas características se detallan a continuación:
  • POLIPASTO O APAREJO: en este tipo de sistema las poleas están ubicadas en dos conjuntos, en el primero se encuentran las poleas fijas y en el segundo las móviles. El objeto o la carga se acopla al segundo grupo.  Los polipastos cuentan con una gran diversidad de tamaños. Aquellos más diminutos son ejecutados a mano, mientras que los de mayor tamaño cuentan con un motor.

Equilibrio y centro de gravedad


La fuerza más corriente que actúa sobre un cuerpo es su propio peso. En todo cuerpo por irregular que sea, existe un punto tal en el que puedo considerarse en él concentrado todo su peso, este punto es considerado el centro de gravedad .
El centro de gravedad puede ser un punto exterior o interior del cuerpo que se considere.
El conocimiento de la posición de los centros de gravedad, es de suma importancia en la resolución de problemas de equilibrio, porque son los puntos de aplicación de los vectores representativos de los respectivos pesos.
El centro de gravedad de una línea está en el punto de aplicación de un sistema de fuerzas paralelas aplicadas a cada uno de los fragmentos elementales en que se puede considerar descompuesta la misma y proporcionales respectivamente a las longitudes de estos elementos de línea. Si se trata de un elemento rectilíneo, el centro de gravedad se haya en su punto medio. El de un arco de circunferencia puede calcularse mediante recursos de cálculo referencial, y se encuentra situado sobre el radio meio, a una distancia del centro.
En conclusión el centro de gravedad es el punto en el que se encuentran aplicadas las fuerzas gravitatorias de un objeto, o es decir es el pto. en el que actúa el peso. Siempre que la aceleración de la gravedad sea constante, el centro de gravedad se encuentra en el mismo punto que el centro de masas1.
El equilibrio de una partícula o de un cuerpo rígido también se puede describir como estable o inestable en un campo gravitacional. Para los cuerpos rígidos, las categorías del equilibrio se pueden analizar de manera conveniente en términos del centro de gravedad. El Centro de gravedad es el punto en el cual se puede considerar que todo el peso de un cuerpo está concentrado y representado como una partícula. Cuando la aceleración debida a la gravedad sea constante, el centro de gravedad y el centro de masa coinciden.
En forma análoga, el centro de gravedad de un cuerpo extendido, en equilibrio estable, está prácticamente cuenco de energía potencial. Cualquier desplazamiento ligero elevará su centro de gravedad, y una fuerza restauradora lo regresa a la posición de energía potencial mínima. Esta fuerza es, en realidad, una torca que se debe a un componente de la fuerza peso y que tiende a hacer rotar el objeto alrededor de un punto pivote de regreso a su posición original.
Un objeto está en equilibrio estable mientras su Centro de gravedad quede arriba y dentro de su base original de apoyo.
Cuando éste es el caso, siempre habrá una torca de restauración . No obstante cuando el centro de gravedad o el centro de masa cae fuera de la base de apoyo, pasa sobre el cuerpo, debido a una torca gravitacional que lo hace rotar fuera de su posición de equilibrio.
Los cuerpos rígidos con bases amplias y centros de gravedad bajos son, por consiguiente más estables y menos propensos a voltearse. Esta relación es evidente en el diseño de los automóviles de carrera de alta velocidad, que tienen neumáticos y centros de gravedad cercanos al suelo.
El centro de gravedad de este auto es muy bajo por lo que es casi imposible que se voltee.
También la posición del centro de gravedad del cuerpo humano tiene efectos sobre ciertas capacidades físicas. Por ejemplo, las mujeres suelen doblarse y tocar los dedos de sus pies o el suelo con las palmas de las manos, con más facilidad que los hombres, quienes con frecuencia se caen al tratar de hacerlo. En general, los hombres tienen el centro de gravedad más alto (hombros más anchos) que las mujeres (pelvis grande), y es por eso que es más fácil que el centro de gravedad de un hombre quede fuera de apoyo cuando se flexiona hacia el frente.
Cuando el centro de gravedad queda fuera de la base de soporte, el objeto es inestable (hay una torsión desplazadora).
En los circos usualmente hay actos de acróbatas y lo que sucede es que el acróbata, cualquiera sea el acto que haga tiene una base de soporte muy angosta, o sea el área pequeña del contacto de su cuerpo con su soporte. Mientras que el centro de gravedad permanezca sobre esta área, él está en equilibrio, pero un movimiento de unos cuantos centímetros sería suficiente para desbalancearlo.

Centro de masa

La conservación del momento total nos da un método para analizar un "sistema de partículas". Un sistema tal puede ser virtualmente cualquier cosa (un volumen de gas, agua en un recipiente o una pelota de béisbol). Otro concepto importante nos permite el análisis del movimiento general de un sistema de partículas. Comprende la representación del sistema entero, como una partícula sencilla cuyo concepto se iniciará aquí. Si no hay alguna fuerza externa que actúe sobre una partícula, su cantidad de movimiento lineal es constante. En una forma similar, si no hay alguna fuerza que actúe sobre un sistema de partículas, la cantidad de movimiento lineal del sistema también es constante. Esta similitud significa que un sistema de partículas se puede representar por una sola partícula equivalente. Objetos móviles taIes como pelotas, automóviles y demás, se pueden considerar en la práctica como sistemas de partículas y se pueden representar efectivamente por partículas simples equivalentes cuando se analiza su movimiento. Tal representación se hace por del concepto de centro de masa (CM). El Centro de masa es el punto en el cual se puede considerar concentrada toda la masa de un objeto o de un sistema. Aun si el objeto esta en rotación, el centro de masa se mueve como si fuera partícula. Algunas veces el centro de masa se describe como si estuviera en el punto de equilibrio de un objeto sólido. Por ejemplo, si usted equilibra un metro sobre su dedo, el centro de masa de la varilla de madera está localizada directamente sobre su dedo y toda la masa parece estar concentrada ahí La segunda ley de Newton se aplica a un sistema cuando se usa el centro de masa En donde F es la fuerza externa neta, M es la masa total del sistema o la suma masas de las partículas del sistema (M = m1 + m2 + m3+...+mn),donde el sistema tiene n partículas), y ACM es la aceleración del centro de masa. La ecuación dice que el centro de masa de un sistema de partículas se mueve como si toda la masa del sistema estuviera concentrada alli, y recibiera la acción de la resultante de las fuerzas externas. Así mismo, si la fuerza externa neta que actúa sobre un sistema de partícula cero, la cantidad de movimiento lineal total del centro de masa se conserva (permanece constante) dado que como para una partícula . Esto significa que el centro de masa se mueve con una velocidad constante o permanece en reposo. Aunque usted puede visualizar con más facilidad el centro de masa de un objeto sólido, el concepto del centro de masa se aplica a cualquier sistema de partículas u objetos, aunque esté en estado gaseoso. Para un sistema de n partículas dispuestas en una dimensión, a lo largo del eje de las x , la posición del centro de masa esta dada por Esto es, Xcm es la coordenada x del centro de masa de un sistema de partículas. En una notación corta (usando signos para indicar las direcciones de los vectores) en donde la sumatoria , indica la suma de los productos m1x1. para i partículas (i= 1, 2, 3,..., n). Si sumatoria x1 m1 = 0, entonces Xcm = O, y el centro de masa del sistema unidimensional está localizado en el origen. Otras coordenadas del centro de masa para sistemas de partículas se definen en forma similar. Para una distribución bidimensional de masas, las coordenadas Iro de masa son (Xcm, ; Ycm) Un concepto especialmente útil al analizar el movimiento de un sistema de mu­chas partículas, o un cuerpo finito, es el de Centro de masa, abreviado CM de aquí en adelante. Aunque el CM es muy útil al tratar la rotación, también simplifica considerablemente el análisis de los choques, y por tanto introduciremos este concepto.

domingo, 29 de abril de 2012

¿Sabias que?

Sir Isaac Newton,fue un físico, filósofo, teólogo, inventor, alquimista y matemático inglés, autor de los Philosophiae naturalis principia mathematica, más conocidos como los Principia, donde describió la ley de gravitación universal y estableció las bases de la mecánica clásica mediante las leyes que llevan su nombre. Entre sus otros descubrimientos científicos destacan los trabajos sobre la naturaleza de la luz y la óptica (que se presentan principalmente en su obra Opticks) y el desarrollo del cálculo matemático. Newton comparte con Leibniz el crédito por el desarrollo del cálculo integral y diferencial, que utilizó para formular sus leyes de la física. También contribuyó en otras áreas de la matemática, desarrollando el teorema del binomio y las fórmulas de Newton-Cotes. Newton fue el primero en demostrar que las leyes naturales que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento de los cuerpos celestes son las mismas. Es, a menudo, calificado como el científico más grande de todos los tiempos, y su obra como la culminación de la revolución científica. El matemático y físico matemático Joseph Louis Lagrange (1736–1813), dijo que "Newton fue el más grande genio que ha existido y también el más afortunado dado que sólo se puede encontrar una vez un sistema que rija el mundo."

viernes, 27 de abril de 2012

Leyes de newton

Las Leyes de Newton son un intento de describir esas interacciones de manera general y en cada una de ellas está presente el concepto de interacción entre cuerpos diferentes y lo que ellas describen son las consecuencias de esas interacciones. Primera ley:Ley de Inercia. Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilínio a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre el. Segunda ley:Ley de la fuerza El cambio de cantidad de movimiento es proporcional a la fuerza motriz impresa y ocurre según línea recte a lo largo de la cual aquella fuerza se imprime. Tercera ley: Ley de Acción y Reacción Con toda acción ocurre siempre un reacción igual y contraria.Es decir, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.

Peso

Es la fuerza con la cual un cuerpo actúa sobre un punto de apoyo, originado por la aceleración de la gravedad, cuando esta actúa sobre la masa del cuerpo. Al ser una fuerza, el peso es en sí mismo una cantidad vectorial, de modo que está caracterizado por su magnitud y dirección, aplicado en el centro de gravedad del cuerpo y dirigido aproximadamente hacia el centro de la Tierra. Por extensión de esta definición, también podemos referirnos al peso de un cuerpo en cualquier otro astro (Luna, Marte, ...) en cuyas proximidades se encuentre.

Las leyes de Newton

La inercia

La inercia en Física designa a la incapacidad de los cuerpos para salir del estado de reposo o de movimiento o variar las condiciones de ese movimiento, en forma independiente de una fuerza exterior.La inercia es proporcionalmente directa a la masa del cuerpo.

Masa

La masa por la parte de física permite expresar la cantidad de materia de un cuerpo.Es una propiedad Intrínseca de los cuerpos que determina la medida de la masa inercial y de la masa gravitacional.La unidad que se para medir la masa es kilogramo (kg).

FISICA DINAMICA PROBLEMA 1

jueves, 26 de abril de 2012

La fuerza

Es una magnitud física que mide la intensidad del intercambio de momento lineal entre dos partículas o sistemas de partículas . Por medio de conceptos básicos , fuerza es todo agente capaz de modificar la cantidad de movimiento o la forma de los cuerpos materiales. .La fuerza siempre se debe expresar en newton.

viernes, 20 de abril de 2012

La dinamica

La dinámica es la parte de la física que describe la evolución en el tiempo de un sistema físico en relación a las causas que provocan los cambios de estado físico y/o estado de movimiento.tambien se puede definir como la parte de la fisica que estudia el movimiento de los cuerpos y las fuerzas que producen dicho movimiento.